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Outline

1. Discrete aspects of finite size scaling (FSS)

2. Nonlinear effects in B4, the Binder cumulants (0712.1190)

3. The zero volume limit (as a way to learn about the infinite volume limit)

4. B4 for Polyakov’s loop in 4D SU(2) (universality class?)

5. Finite size effects for the density of states in lattice gauge theory
(Phys.Rev.D78:054503)

6. Gap equation for 2D nonlinear sigma models at finite volume (no SB)
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Remarks

This is an informal discussion of several pieces of work in progress articulated
around the following question: what can we learn about the critical behavior
of lattice models by studying their small volume behavior in a region of
parameter space where linear FSS is applicable?

Small lattice systems are easy to simulate or approximate (brute force
usually works), but the boundary is not small compared to the bulk.

A RG transformation can be seen as gluing small systems together in order
to obtain a new small system of the same size (in the renormalized units)

Irrelevant directions yield corrections of the type (number of sites in one
direction)−ωi with ωi well separated (typically ωi = 1, 3, 5...). In the linear
regime, only a few are important and they can be disentangled.
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Discrete Finite Size Scaling

Consider a lattice model in D dimensions, with lattice spacing a,
linear size N , volume V = ND and nonlinear scaling variables ui.

Under a RG transformation

a → ℓa; N → N/ℓ ;ui → ℓyiui

with ℓ a rational value (N/N ′) (examples: Migdal-Kadanoff or Schrödinger
functional)

For scalar models with average magnetization m

Veff(ℓymm, ℓyiui, N/ℓ) = ℓDVeff(m,ui, N)
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Exact Realization: Hierarchical Model

2n sites Labeled with n indices xn, .....x1, each index being 0 or 1 (think
about a tree with n branching levels).

Kinetic term (sum over blocks of all 2l sizes; not renormalized):

S = −1

2

n∑

l=1

(
c

4
)l

∑

xn,...,xl+1

(
∑

xl,....,x1

φ(xn,....,x1))
2

If c = 2(D−2)/D, Gaussian fields scale like in D-dimensions

ℓ = 2
1
D : “linear” scale factor (block spin: 2 sites→1 site). D = 3 hereafter

Exact RG transformation affects only the local potential
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Recursion Formula

Initial local measure: W0(φ) = δ(φ2 − 1) (Ising) or W0(φ) = e−Aφ2−Bφ4

Block spin transformation:

Wn+1(φ) = Cn+1e
β
2 (c

4)
n+1φ2 ∫

dφ′Wn((φ−φ′)
2 )Wn((φ+φ′)

2 ) ,

Fourier Representation of the RG transformation (c = 21−2//D)

Rn+1(k) = Cn+1exp(−1
2β

∂2

∂k2)(Rn(
√

ck
2 ))2

Mn: the total field
∑

φx inside blocks of side 2n ;

Rn(k) =
∑∞

q=0
(−ik)2q

(2q)!
<(Mn)2q>n

(4/c)qn
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2. Nonlinear effects in Binder cumulants (0712.1190)

We consider the fourth order Binder cumulant

B4 ≡ < m4 >

< m2 >2
= f(uκN1/ν, u1N

−ω1, u2N
−ω2, . . . )

uk is the relevant scaling variable uk ≃ κ ≡ (β − βc)/βc in the linear
approximation.

< m2l > are unsubtracted moments of the average spin.

At βc and infinite volume, B4 is a universal quantity.
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Figure 1: B4 versus β (left) and κN1/ν (right), for N = 8, 16, 32, 64 and
128 for the Ising hierarchical model.( κ ≡ (β − βc)/βc).
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B4(β, N) ≃ B4(βc,∞) + f1κN1/ν + f2κ
2N2/ν + (c0 + c1κN1/ν)N−ω .

In the linear approximation (f2 = c1 = 0), we recover the standard linear
FSS formula for the point of intersection denoted (β⋆(N, N ′), B⋆

4(N, N ′))
between the two curves B4(β, N) and B4(β, N ′), namely

β⋆(N, N ′) = βc + βc(c0/f1)L(N, N ′) ,

B⋆
4(N, N ′) = B4 + c0M(N, N ′) , (1)

with

L(N, N ′) = (N−ω − N ′−ω)/(N ′1/ν − N1/ν) ,

M(N, N ′) = (N−ω−1/ν − N ′−ω−1/ν)/(N ′1/ν − N1/ν) . (2)
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The shrinking interval procedure

In the literature, B4 is often plotted for different volumes but at fixed values
of β. It is better to shrink the interval as the volume increases. Given N
and an estimate β̄c of βc from smaller volumes, we should restrict

|β − β̄c| < ǫ(f1/f2)β̄cN
−1/ν .

The value of ǫ needs to be chosen carefully. On one hand, we need ǫ small
enough in order to control the nonlinear effects. On the other hand, if ǫ
is very small, we need a correspondingly good estimate of βc. In addition,
when ǫ is too small, the intersections may be far away from the interval.
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Figure 2: Empirical values of B⋆
4(N, N ′) versus M(N, N ′) obtained with

the fixed interval procedure (left) and with the shrinking interval procedure
(right) for 4 sets of 6 pairs of values. The solid line are linear fits. The dash
line is the behavior expected from independent accurate calculations.
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Figure 3: Infinite volume extrapolations of βc and B4 based on 15 point
linear fits from the intersections among the B4 curves at N = 2n/3 and the
5 values of N immediately below, for n between 19 and 24.
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The zero volume limit

B4 = f(uκN1/ν, u1N
−ω1, u2N

−ω2, . . . )

The ωi are widely spaced for the HM

ω1 = 0.655736

ω2 = 3.17995

ω3 = 5.91212

A strategy to get accurate estimates at not too large volume is to try to
fine tune uκ and u1 to the smallest possible values. Fine tuning u1 can be
done by looking for the crossing of the first and second irrelevant directions
at very small volume. This was done for a LG measure.
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Figure 4: ln|B4−2.49641845|, versus n =Log2V . The two lines have slopes
corresponding to the first irrelevant direction and the relevant direction
(from left to right). β was fine tuned with 8 digits.
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Figure 5: ln|B4 − 2.49641845|, versus n =Log2V . The three lines have
slopes corresponding to the second and first irrelevant directions and the
relevant direction (from left to right). β was fine tuned with 8 digits and
λ4 with 3 digits.
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Binder cumulants for Polyakov loop in SU(2)
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Figure 6: Ln(|g4 − g4Ising|) versus Ln(N) near βc, using A. Velytsky data;
linear fit suggests ω ≃ 2 (0.8 expected for Ising)
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Figure 7: Ln(slope of g4 ) versus Ln(N) near βc at fixed linear size L, for
L= 8, 10, 16 and 32 (from, A. Velytsky data), the slope is 1.531 suggesting
ν ≃ 0.653 closer to O(2) than Ising. Error analysis in progress.
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n(S) in Wilson’s SU(2) (0807.0185)
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Figure 8: Close-up of the patching process for 64 (n(S) ∝ Pβ(S)eβS).
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Figure 10: ∆lnn(S)/Np for 44 and 64. 21
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Figure 11: The noise in the tail of ∆lnn(S)/Npfor 44 and 64. 22
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Figure 12: ∆lnn(S)/Np for 44 and 64 divided by ln(S/Np). Predicted
constant is -0.0013.
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Fisher’s zeros

Figure 13: Zeros of the real (crosses) and imaginary (circles) using MC on
a 44 lattice, for SU(2) at β0 = 2.18. The values for the real (green) and
imaginary (blue) parts are obtained from a 4 parameter model.
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Figure 14: Same for a 64 lattice. The region of confidence for MC shrinks
like V −1/2.
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With the density of states (D.Du)
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Figure 15: Complex zeros for SU(2) using the density of states for a 44

lattice.
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Figure 16: Complex zeros closest to the real axis for SU(2) using the
density of states for a 44, 4 × 63 and 64 lattices (D. Du). (3/2)1.7 ≃ 2
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U(1) lattice gauge theory
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Figure 17: Density of states for U(1) on a 44 lattice by multicanonical
methods (A. Bazavov).

28



0.94 0.98 1.02 1.06
0.

0.01

0.02

0.03

0.04

0.05

0.06

Re beta

I
m

b
e
t
a

4x4x4x4

0.99 1.00 1.01 1.02

0.01

0.02

0.03

0.04

0.05

0.06

Re beta

I
m

b
e
t
a

6x6x6x6

Figure 18: Zeros of Re and Im part of Z for U(1) using the density of states
for 44 and 64 lattices.
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Nonlinear O(N) sigma model on a square lattice

Z =
∫ ∏

x dNφxδ( ~φx
~φx − 1) e−(1/g2

0)E[{φ}]

with E[{φ}] =
∑

x,e(1 − ~φx
~φx+e)

We assume a cubic lattice with an even number of sites in each directions
and periodic boundary conditions. Under these conditions (as for SU(2N)
LGT)

Z[−g2
0] = e4DLD/g2

0Z[g2
0]

This can be seen by changing variable φ → −φ on sublattices with lattice
spacing twice larger and such that they share exactly one site with each link
of the original lattice.
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Gap equation

∏D
j=1

∫ π

−π

dkj

2π
1

2(
∑D

j=1(1−cos(kj))+M2
= 1/λt

with λt = g2
0N kept constant as N becomes large.

The saddle point equation is invariant under λt → −λt together with
M2 → −M2 − 4D. This can be seen by changing variables kj → kj + π
for all j.

For D = 2, λt → 0 when M2 → 0, −8 ,−4 ± iǫ with double poles at
(k1, k2) = (0, 0), (π, π), (0, π), (0, π) respectively.
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Figure 19: Complex values taken by λt when M2 varies over the complex
plane (here on horizontal and vertical lines in the M2 plane).
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Figure 20: Complex values taken by λt when M2 varies over the complex
plane (here on horizontal and vertical lines in the M2 plane); the circles are
inverses of the asymptotic lines in the 1/λt plane.
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Finite Volume

On a L × L lattice, ki = 0, 2π
L , 22π

L , . . . (L − 1)2π
L

The gap equation becomes:
∑

k1,k2

1

2(
PD

j=1(1−cos(kj))+M2
= 1/λt

The maping becomes a rational function: λt = P (M2)
Q(M2)

Singular points ( ∂λt

∂M2 = 0) when P ′Q − PQ′ = 0

As V = L × L increases, the singular points move toward [−8, 0].
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Figure 21: Zeros, poles and singular points of λ(M2) in the M2 plane for
4x4 and 8x8 latices.
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Figure 22: Images in the λ plane of lines of constant imaginary part 2.25,
1.75, 1.25, 0.75, 0.25, -0.25, ....,-2.25 and of the singular points (red dots)
for a 8x8 lattice Zeros , poles and singular points in the M2 plane for a 8x8
latice. 36
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Figure 23: Images in the λ plane of lines of constant imaginary part and
of the singular points (red dots) for a 8x8 lattice. Inside line is at infinite
volume.
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Conclusions

• Nonlinear effects should be carefully estimated before trying to do
accurate calculations of Binder cumulants.

• Irrelevant directions should be studied at small volume.

• Universality class for SU(2) finite T transition is not obviously Ising (but
should be).

• Volume effects under control for the density of states of Wilson action.

• Large-N 2D sigma models: no SB at complex coupling (the inside of the
”clover”) in the complex λt plane corresponds to Riemann sheets in the
M2 plane.
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